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ABSTRACT
Establishing conversations in a B2B environment has signif-
icantly eased since the advent of standards such as Roset-
taNet and ebXML. These standardisation efforts have main-
tained some flexibility in defining interactions among busi-
ness partners to allow companies with different internal processes
to comply with them. However, the standards are syntac-
tic, rather than semantic. Constraints on the interactions
are currently represented informally, if at all. If two busi-
ness partners want to communicate they still have to find
out if the overall constraint set is fulfilled by the respec-
tive business partner. To define this global interaction in
the context of a conversation we introduce a formally de-
scribed language, called L3. This language grounds on well-
defined execution semantics and incorporates a history of
the conversation. In our approach, we show how the lan-
guage allows business partners to define their constraints on
the interaction from a global perspective, how certain prop-
erties of the conversation may be formally checked, such as
deadlock-freedom and how it builds on an architecture based
on Semantic Web Services.
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1. INTRODUCTION
The Web is changing from a mere repository of informa-

tion to a new vehicle for business transactions and informa-
tion exchange. Large organisations are increasingly relying
on Web Services technologies for large-scale software devel-
opment and sharing or exposing of services within an organ-
isation. Web Services are loosely coupled software compo-
nents published, located and invoked across the web. The
growing number of Web Services available on the Web raises
a new and challenging problem, the interaction among het-
erogeneous services. Precisely in B2B [5] scenarios, this be-
comes increasingly important since, if two business partners
want to communicate they have to find out which is the role
they are playing, what is the format of the messages ex-
changed, and what is more important which are the tempo-
ral and order constraints for the sequencing of the messages.

The Semantic Web is about adding machine-understandable
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and machine-processable metadata to Web resources through
its key-enabling technology: ontologies. Ontologies [9] are
a formal, explicit and shared specification of a conceptu-
alisation [32]. The breakthrough of adding semantics to
Web Services leads to the Semantic Web Services paradigm.
Several Semantic Web Service initiatives such as OWL-S
[33], which offers semantic markup based on OWL [8] or the
newly established WSMO [27] have recently gained momen-
tum. WSMO builds on a clearly defined conceptual model
based on goals, mediators, Web Services and ontologies.

However, in the B2B context the problem of describing
interactions remains since there are no specific semantics to
describe a conversation among several Web Services. Cur-
rent technology prevents the ideal situation in which a B2B
conversation can be specified in a formal way, where desired
properties may be checked in advance, fulfilling a set of ba-
sic B2B requirements and having a provided language and
architecture for such interaction.

In this paper, we present a novel approach to address
those challenges and solve the interaction problem of Seman-
tic Web Services with formal semantics. Our contribution
is an overall solution based on a complete language, called
L3. L3 has a conceptual model, a syntax, formal execution
semantics, an architecture and implementation. The unam-
biguous execution semantics of L3 based on Petri Nets [25]
allow to check deadlock-freedom and human-understandable
interpretation. In order to thrust the language design, we
follow a simple but effective methodology. Firstly, we intro-
duce a simple B2B scenario. We extract requirements for
our language (Section 2.2), comparing them with existing
standards (Section 3) and current technology. Finally, we
show how our L3 language (Section 4) solves the interac-
tion problem. Conclusions and related Work are discussed
in Section 5.

2. REQUIREMENTS FOR A B2B CONVER-
SATIONAL LANGUAGE

2.1 A simple B2B scenario
In the following a simple B2B [5] scenario is introduced.

This scenario is based on a real-world problem and it is
useful to extract a set of requirements for modelling B2B
interactions.

In our scenario, a customer sends a request for quotes
(RFQ) to a supplier. The supplier answers with the quote



to the customer. If the result is satisfactory enough for its
business logic, the customer proceeds to order the goods.
The supplier then verifies with its warehouse if it is possible
to provide the goods to the customer by checking the avail-
ability of the goods. Subsequently, the customer order is
confirmed and the payment is made. Once the payment has
finished, the supplier forwards the order to the warehouse
and the customer gets all the shipment details. Alterna-
tively, it could be the case that the customer payment is
made after delivery, but we will consider only the former
possibility. Finally, the customer confirms the delivery of
the shipment. Once the warehouse has informed the sup-
plier about this acknowledgement of delivery, the business
process is concluded. The scenario is shown in Figure 2 by
means of a UML sequence diagram [2]. In this figure, the
emphasis is set on the order and sequence of the message
exchange.

We will describe in detail each interaction and consider
the requirements that would be necessary to model the con-
versation properly. Firstly, it is quite clear that we need
a partner view (Requirement 1: Partner view) because we
always have a sender and a receiver of the interaction. This
partner view must clearly define the role each participant is
playing in the conversation. The sequence in plain text is as
follows.

1. Customer sends a RFQ message to the supplier.

2. Supplier replies with a quote. It may be the case that
the supplier wants to send multiple quotes and at the
same time i.e. in a concurrent way (Requirement 2:
Concurrency)

3. Customer sends a message for ordering goods to the
supplier.

4. Supplier sends a message to the warehouse to check if
the goods are available and the shipment is possible.

5. Warehouse sends a message indicating the availability
of the goods to the supplier.

6. Supplier sends a message to the customer confirm-
ing his order. The supplier may want to trace back
the whole conversation. Therefore, the history of the
conversation i.e. the explicit representation of how
the conversation evolved through time must be stored.
(Requirement 3: History)

7. Customer sends a message to the supplier paying the
order.

8. Supplier sends a message to the warehouse ordering
the shipment. The warehouse has already sent a mes-
sage to the customer directly informing about the de-
livery of the goods. The supplier is then waiting for a
confirmation from the warehouse and the warehouse is
waiting for a message from the customer. This leads to
a deadlock situation. A deadlock occurs when the par-
ticipants of the conversation have reached a state from
which it is impossible for any of them to proceed. It
is advisable to be able to check deadlock-freedom and
avoid by any means deadlock situations. (Requirement
4: Deadlock-freedom)

9. Warehouse sends a message to the customer informing
about the delivery of the goods.

10. Customer sends a message to the supplier confirming
the delivery has happened.

11. The warehouse sends a message to the supplier con-
firming the delivery was successful.

Finally, the correct modeling of the conversation depends
on finding a suitable to check the consistency and coher-
ence of the model. If the specification of the conversation is
written in a logical language, it is feasible to derive conse-
quences out of the specification. Using inference, properties
of the specification that were not explicitly stated can be
proven. In this way, invisible behaviour and properties of
the system can be predicted and tested without having to
be implemented. For this formal execution semantics i.e.
a formal method to model execution semantics are needed
(Requirement 5: Formal execution semantics)

2.2 Requirements for modeling a B2B inter-
action

2.2.1 Requirement 1: Partner view
A partner is considered one of the entities involved i.e. a

participant of the interaction. A partner plays a specific role
in a conversation i.e. it can be the Sender or the Receiver
of a specific interaction. This distinction is made clear in
the design of communication protocols where the perspec-
tive of the behaviour modelled becomes an important issue.
As described in [18], the Sender is the initiator of an in-
teraction and the Receiver is the passive subject of that
communication. This relationship is symmetric in the sense
that the Receiver may turn into Sender. For our approach,
this means that two partner have to agree which role they
are playing in the interaction and, as explained in section 3,
agree with the specification of such interaction.

2.2.2 Requirement 2: Concurrency
The reasons for concurrent execution in computing sys-

tems are twofold. In a distributed system, concurrent exe-
cution is caused by the fact that several systems are active.
They evolve independently, communicate with each other in
order to exchange date or synchronise. Hence, concurrency
is inherited to distributed systems and can not be avoided.

Centralised systems can use concurrency for their benefit.
For example, event-ready systems such as industrial surveil-
lance, real-time or simulation systems which must handle
sporadic incoming events, such as alerts or user generated.
In these cases, designing or solving the problem with a con-
current approach is intuitive and simple.

In our particular case, concurrency appears when several
messages have to be sent at the same time. From a func-
tional viewpoint, this means that several processes or soft-
ware programs are operating at the same time.

Modern operating systems describe two forms of concur-
rency. Heavyweight concurrency defines processes as pro-
grams that usually execute in separate address spaces on a
computer system. They can execute concurrently and the
processing power of the system is assigned to the processes
following different scheduling policies and priorities. Light-
weight concurrency defines threads as entities inside a single
process which make concurrency possible. Here, the process-
ing power available is split up among threads. Both forms
are appropriate to implement concurrency.



2.2.3 Requirement 3: History
In B2B [5], we found that a history is an explicit repre-

sentation of past sate changes of the objects in a system.
Those changes may be related to the time, date and user
who caused it. When an error of inconsistency occurs in a
system, the history that led to the failure point becomes of
immediate interest. History is somehow a subcomponent of
monitoring. A history query for one object returns the list
of all state changes of this object. For example, the history
of an event may retrieve a list of all the state changes that
the event went through.

There are several types of history with different implica-
tions. One type of history is based on versions of the ob-
jects only. This type of history only records the versions of
objects, but not the changes that occurred between two ver-
sions. Another type of history records only specific states
of the objects e.g. the initial and end states. Finally, an
ultimate type of history is the complete history. This type
of history collects the full set of all state changes that occur
in the complete system. There is not state change anywhere
that is not recorded. This type of history allows the com-
plete replay of what happened at any point in time. No
matter what the situation is that requires history, the his-
tory can provide whatever is recorded because it is complete.

In principle, this type of history is the most useful since
it is difficult to know which history details are relevant and
to what extent. Nevertheless, it is also the most hard-to-
implement and cost-ineffective since all state changes have
to be recorded without exceptions and the resulting set of
history data has to be stored and managed.

2.2.4 Requirement 4: Deadlock-freedom
The need of synchronisation in a conversation leads to

difficulties to be considered in the design of an interaction-
based system. Even worse problems in terms of synchronisa-
tion lead to a deadlock situation. A deadlock is a situation
in which a set of processes are in a state from which it is
impossible for any of them to proceed due to mutual de-
pendencies of their resources. For example, this situation
arises if some processes are part of a circular chain, and
each process is holding resources that are requested by the
next process in the chain.

It is difficult to avoid such situation. There are sev-
eral techniques to deal with systems which model reactive-
behaviour i.e. parallel or distributed systems that communi-
cate with each other. For example, in model-checking tech-
niques, a desired property is expressed in a suitable temporal
or dynamic logic and a system is modelled as a transition
system. By means of an efficient search procedure, it is
checked if the property holds in the transition system. The
checking is completely automatic and the result indicates
if the model satisfies the property or a counterexample in
which the model fails to satisfy it. One of these properties
to be checked is deadlock-freedom. The main drawback of
model checking is the state explosion problem. It occurs
in the systems with an enormous number of global states,
making it very difficult to check all possible states of the
system.

2.2.5 Requirement 5: Formal execution semantics
Semantics provide meaning to computer programs. This

meaning enables reasoning about such programs, based on
the mathematical properties of the applied semantics. Rea-

soning is the process of drawing conclusions from facts [1]. In
1970, three main styles of formal reasoning about computer
systems, focused on giving semantics (meaning) to programs
were defined:

• Operational semantics: A computer program is mod-
elled as an execution of an abstract machine. A state of
such a machine is defined as an evaluation of variables.
Simple program instructions represent transitions be-
tween states [21].

• Denotational semantics: Computer programs are just
represented as a function between the input and the
output [29].

• Axiomatic semantics: Programs are proved to be cor-
rect using proof methods. Central notations are pro-
gram assertions, proof triples consisting of precondi-
tion, program statement, post-conditions and invari-
ants [6].

For execution semantics, we follow the first approach, also
called operational semantics. Execution semantics describe
how the program evolves and behaves, but they are more effi-
cient when described by a formal method. A formal method
is used to describe mathematically and reason about a com-
puter system. The advantage of using a formal method to
model the execution semantics is that, if the specification is
written in a logical language that could use inference, it is
feasible to derive consequences out of the specification. Us-
ing this inference feature, properties of the specification that
were not explicitly stated can be proven. In this way, invisi-
ble behaviour and properties of the system can be predicted
and tested without having to be implemented, for instance,
deadlocks or errors. Another advantage is verification of
properties. Two well established approaches to verification
with formal methods are model checking and theorem prov-
ing. These formal methods are used to analyse a system for
desired properties.

Model checking is a technique that relies on building a
finite model of a system and checking that a desired prop-
erty holds in that model. In other words, an exhaustive
state space search check is performed which is guaranteed
to finish, given that the model is finite.

Given this restriction, model checking must devise algo-
rithms and data structures to handle large search spaces.
This technique has been widely used in protocol verification
and recently, it is intended to be used for analysing specifi-
cation of software systems.

Fundamentally, there are two general approaches to model
checking. First one is called temporal model checking. In
this approach, specifications are expressed in Temporal Logic
[26] and systems are modelled as finite state transition sys-
tems. The procedure used is to check if a given finite state
transition system is a model for the specification. The sec-
ond approach requires an automaton behaviour for the spec-
ification. Then, the system is also modelled as an automaton
and both are confronted to determine if the system behav-
iour conforms to the specification.

In contrast to theorem proving, model checking is auto-
mated and fast, it checks partial specifications, even if the
system is just partially designed and produces counterexam-
ples i.e. situations in which the model does not comply with
the specifications, what can be used in debugging.



The main drawback of model checking is state explosion.
There is a number of methods to alleviate this problem,
such as appropriate reduction or abstraction techniques [7],
which basically allow checking an almost unlimited number
of states.

Theorem proving is used when system properties are spec-
ified in a certain mathematical logic. This logic defines a set
of axioms and a set of inference rules. Theorem proving is
the process of finding a proof of a property from the axioms
of the system. This technique is being increasingly used in
mechanical verification of safety-critical properties of soft-
ware designs. Theorem proving can deal with infinite states
if it relies on techniques such as structural induction to prove
over infinite domains.

Formal execution semantics are also used as a prescrip-
tion during the implementation of a system, where it is
of the utmost importance that the specification is human-
understandable. Otherwise the situation could arise that the
specification is perfect, several properties has been checked
and verified, but since the developer does not understand the
specification correctly, the implementation does not follow
the specification and the system does not behave correctly.

Hence, the use of formal execution semantics is twofold:
automatically check the system properties and help the de-
velopers to understand the specification.

3. THE PROMISED LAND: ROSETTANET
AND EBXML

A B2B protocol standard is in general with regards to
a B2B interaction, the description of the message formats
exchanged, their bindings to transport protocols and the se-
quencing of the messages, the security to be provided and
many other properties [3]. The focus of our language is par-
ticularly on one of this aspects, the sequencing of messages.
Different B2B protocol standards also focus on different as-
pects and not all cover every aspect. Hence for our overview
we will only cover those standards which support modelling
of the sequencing and of messages. The exchange sequence
definition defines when a conversation is one-way (notifica-
tion) and when some acknowledgment is required, a so called
two-way (conversation). It also defines any retry logic for
sending messages, i.e. when to retry and how often. The
process definition defines the business event behaviour, i.e.
the order of the exchange of several messages. It is between
business partners only and does not define the business logic
within a trading partner [3].

RosettaNet is the first standard we cover supporting among
others the above described aspects. RosettaNet is a non-
profit organisation that seeks to implement standards for
supply-chain transactions on the Internet. The standard
forms a common language, to align the processes between
supply chain partners on a global basis. The backbone and
key concept of the standardisation effort are the Partner In-
terface Processes (PIPs), which are used to define standard
ways of interacting between companies to carry out a spec-
ified task. PIPs define business processes between trading
partners. For each process, PIPs define the start state, the
end state, the participants and their roles, process controls
such as authorisation for each participant, documents ex-
changed and sequence of activities. These PIPs fit into seven
clusters, or groups of core business processes. Each clus-
ter is broken down into segments which are cross-enterprise

processes involving more than one type of trading partner.
PIPs define the aspects of a business process which are

common to the two parties (public processes) [4], but place
no constraints on how the internal processes implement these
common aspects. A PIP not only defines the flow of the
business documents involved in the interaction, but also the
format of the messages. As mentioned above the latter is
not covered in this paper.

In theory the idea behind RosettaNet is that two partners
only have to agree on which PIPs to use, and implement
the PIPs according to their specification, when setting up a
new partnership. However, as different businesses can have
different back-end processes (private processes), flexibility
within the standard remains to enable the adoption of it in
different scenarios. PIP definitions often make use of generic
datatypes and include fields with unbounded cardinalities.
Since this is done at a syntactical level, there is no guaran-
tee that two companies implementing the same RosettaNet
PIP will ultimately be able to communicate with each other.
Hence human interaction is necessary to reconcile the differ-
ent processes used by two companies which intend to inter-
act via RosettaNet. Developers implement these agreements
between two parties when encoding the PIPs.

The second specification also covering the sequencing and
process of messages is the Business Process Specification
Schema (BPSS) as part of ebXML. ebXML itself is a set
of specifications that together enable a modular electronic
business framework. Standards in ebXML are covering the
specification of a registry, a profile with a Business Service
Interface and Business Messages, a Core Library as a set of
standard parts incorporated by other ebXML elements and
a Collaboration Protocol Agreement (CPA) an agreement
between two participants in a business interaction based on
two CPPs.

Again, we only deal with the Business Process Specifica-
tion Schema in here, since it is the ebXMLs standard for se-
quencing and the process of business documents. It provides
a standard framework by which business systems may be
configured to support execution of business collaborations.
The specification itself is based upon prior UN/CEFACT
work (UN/CEFACT Modeling Methodology (UMM)) and
consists of the following functional architecture components:

• UML [2] version of the BPSS

• XML version of the BPSS

• Production Rules defining the mapping from the UML
to XML version

• Business Signal Definitions

The language is divided into the following key concepts.

• Business Transactions: They represent atomic units
of work in a trading arrangement between two busi-
ness partners, a sender and a receiver. Business Trans-
actions cannot be decomposed into lower level units.
They are expected to be enforced by the software man-
aging the transaction, i.e. an ebXML Business Service
Interface (BSI). A Business Transaction will always
either succeed or fail. An example would be Cancel
Purchase Order.

• Business Document Flows: They define the nature of
a business transaction, i.e. the passing of Document



Table 1: Fulfilling of requirements by B2B standards
Requirement RosettaNet ebXML
Partner view Yes Yes
Concurrency Yes Yes

History Yes No
Deadlock-freedom No No

Formal execution semantics No No

Envelopes between the requestor and responder, and
can either be one-way (notification) or two-way (con-
versation). Hence there is always a requesting Busi-
ness Document, and optionally a responding Business
Document. The actual business document definition
itself is achieved using the ebXML core component
specifications, or by some external methodology like
RosettaNet.

• Binary Collaboration: The Binary Collaboration is de-
fined to be between two roles: the requestor and the re-
sponder. It is expressed as a set of Business Activities
between the two roles. Each Business Activity reflects
a state in the collaboration. A Collaboration Proto-
col Agreements (CPA) within the ebXML framework
associate itself with a specific Binary Collaboration.

• Choreography: Choreography within BPSS defines the
ordering and sequencing of Business Activities within
a Binary Collaboration. Choreography is specified in
terms of Business States and their transitions. It in-
cludes a number of auxiliary kinds of Business States
that facilitate the choreographing of Business Activi-
ties like: start, completion, fork, join, decision, busi-
ness transaction activity, business collaboration activ-
ity.

Once summarised, we can proceed to analyse which require-
ments expected in a B2B interaction are being fulfilled. Ei-
ther RosettaNet and ebXML seem to cover most of them,
lacking eventually some of the most important ones, pre-
cisely the ones requiring formal semantics. A comparison
table is presented in Table 1.

4. L3: A CONVERSATION-ORIENTED LAN-
GUAGE FOR B2B INTERACTIONS

In this section, we will describe our conversation-oriented
language. Our language has four main elements. Conceptual
model, BNF syntax, execution semantics, architecture and
implementation.

4.1 The L3 conceptual model
A conceptual model is a set of concepts and relationships

which describes a specific domain. This conceptual model
is grounded in a language. In principle, all languages have
syntax and semantics. Most programming languages are to-
day defined as having grammars written in some extension
of the Backus Naur Form [23]. The precise layout and use of
meta-symbols varies. Here we consider an Extended Backus
Naur Form (EBNF) typical of the variants used to describe
our different languages. A grammar written in this way de-
fines rules of syntax. These rules specify what sequences
of symbols are allowed to occur in a legal program and in
what ways these symbols may be combined. They do not

Figure 1: L3 Conceptual model

specify how such sequences are to be interpreted. That re-
quires semantic rules, which attach meaning to the syntactic
structures of the grammar. We use BNF as the syntax of
our language.

4.1.1 L3 Conceptual model
The conceptual model of L3 is described in the UML [2] di-

agram depicted in Figure 1. This conceptual model has five
main concepts. A SendReceive is the fact of communication.
A SendReceive transmission has a property id and transmits
a TObject. A Transmission Object, TObject, is the actual el-
ement which is being transmitted. In a business context, it
can be a Purchase Order (PO) or a Purchase Order Acknowl-
edgement (POA). It also has an id property. The Partner
concept models the entities involved in the communication,
represented by Source, the origin entity and Target, the des-
tination entity. Partner has an id property and participates
in a SendReceive transmission. TObject has also an id prop-
erty. Finally, a SendReceive transmission presents a certain
History i.e. an explicit representation of the state changes
of the transmission.

4.2 Execution Semantics
Execution or operational semantics were first introduced

in Section 2.2. A computer program is modelled as an ex-
ecution of an abstract machine. A state of such a machine
is defined as an evaluation of variables. Simple program in-
structions represent transitions between states. Since we are
modelling execution semantics, we benefit from the use of a
formal method for this, as explained in section 2.2. We use
Petri Net to model our execution semantics.

A Petri Net [24] is an abstract, formal model of informa-
tion flow. The properties, concepts and techniques of Petri
Nets are being developed in a search for natural, simple and
powerful methods for describing and analysing the flow of
information and control in systems, particularly in systems
that may exhibit asynchronous and concurrent activities.
The major use of Petri Nets has been the modeling of sys-
tems of events in which it is possible for some events to occur
concurrently but there are constraints on the concurrence,
precedence or frequency of these occurrences. A Petri Net
can be represented as a graph. This pictorial representation
models the static properties of a system, like a flowchart
represents the static properties of a computer program. A



Figure 2: Execution Semantics from a global per-
spective

Petri net graph is composed by two types of nodes: a place
(represented by a circle) and a transition (represented by a
bar). These two types of nodes are connected by arcs. The
link can only happen from places to transitions and vice
versa.

Apart from the static properties represented by the flow-
chart, Petri Nets may describe the execution of a system i.e.
its dynamic properties. This is achieved through the motion
of a token, which are moved by the firing of transitions of
the net. A firing is an activation of a transition. A transi-
tion can only fire if it is enabled. A transition is enabled if it
has a token in all its input places. The token path shows the
execution path, and, finally, the dynamic behaviour of the
system. Petri nets may be used in a large number of ways.
For instance, they can be considered as formal automata
and investigated either as automata or as generators of for-
mal languages [19]. There is also a link with the theory of
computational complexity [20].

Petri Nets are also a modelling tool. They were devised
for use in the modelling of a specific class of problems i.e.
discrete-event systems with concurrent events. Particularly,
they model events and conditions in systems. At any point
in time, a system is in a given state. In this state, some con-
ditions holds and this can trigger the occurrence of certain
events. These events may change the state of the system,
causing some of the previous conditions not to hold and new
conditions to hold.

4.2.1 L3 Execution Semantics
The execution semantics of L3 modelled with Petri Nets

are as follows. Firstly, Source has initially the instance of a
TObject ready to send in a state ready to send. Once sent,
the Target has the transmitted TObject and Source has the
TObject in a different state e.g. sent. Source can not send
any number of instances of TObject and can be sent to any
number of Targets. Source maintains a list of TObjects to
be sent and those that have been sent. So it is possible to
inquire Source at any time with respect to what happened
so far and the same Partner can be Source and Target. Now,
a Target has another instance of TObject ready to send and
is in a state ready to send. Once sent, the Target is in a
state which has the received instance of TObject but lacks
the sent instance of TObject. Then the Source is in a state
which has the instance of TObject sent by the Target.

Figure 3: L3 Architecture

4.3 Architecture

4.3.1 L3 architecture
In this section, we introduce the architecture of L3. It is

a service-oriented architecture with a layered design. The
basic functionality of L3 is situated in the bottom layer,
while the more complex functionality is situated in the upper
layer. Like in other layered architectures, the purpose of the
bottom layer is to provide the access to the Web Services
required by the upper layers, hiding the details of how the
Web Services are implemented. The layers are abstracted in
such a way that any software agent can communicate with
any counterpart of the upper layers.

In this context, each layer has a defined function as de-
picted in Figure 3.

• Web Service Layer enables the lowest level commu-
nication. It consists of a set of simple Web Services,
but it is mainly divided between a Web Service client
and a Web Service server. Those Web Services interact
with the lower levels of communication and transport
at a network stack level.

• L3 Communication Layer has two main boxes or
components, namely, a Sender and a Receiver. The
Sender component use a mechanism of the lower layer
to send transmission objects TObjects. The Receiver
component retrieves received TObjects by the lower
layers.

• L3 Application Layer has five components. Its func-
tionality is the following:

– The Lexer or Lexical Analyser reads an input
stream and returns tokens one by one.



– The Parser recognizee valid sentences of the lan-
guage by analysing the syntax structure of the set
of tokens passed to it from the Lexical Analyser.

– The Semantic Analyser specifies the action taken
for each instance of the language and it builds up
the data model in memory.

– The Interpreter / Execution Environment reads
one statement at a time, translates that state-
ment to machine language and executes the ma-
chine language statement, then continues with the
next statement.

– The History Manager records all the history of
the system in a persistence store. Actually the
history is an explicit representation of past state
changes of the objects in a system, so the History
Manager stores all those state changes, so that it
can be queried about the History of the system.

4.4 L3 fulfilment of requirements
When taking into account the requirements enumerated

in section 2.2 and the lack of the fulfillment of some of them
by the current B2B standards, such as the ones considered
in section 3, it becomes a key question to prove if our L3
language fulfills those requirements. Here we will show it
step by step. We have outlined such results in Table 2.

• Requirement 1. Partner view. L3 is designed to dif-
ferentiate between Sender and Receiver, which explic-
itly defines which role the participant is playing in the
conversation. In its conceptual model, Partner is an
explicit concept and its subtypes Source and Target
define Sender and Receiver, respectively.

• Requirement 2. Concurrency. The L3 Architecture
is loosely-coupled and emphasises the external behav-
iour description. This architecture is a set of signif-
icant decisions about the organisation of the system,
the selection of the structural elements and their in-
terfaces by which the system is composed. Together
with the behaviour as specified in the collaboration
among those elements, the composition of these struc-
tural and behavioural elements the L3 architecture de-
couples these elements, their interfaces, their collabo-
rations and their composition. Each of them can inter-
act independently and can be used in a concurrent way.
Regarding the two types of concurrency described in
section 2.2, both of them can be used.

• Requirement 3. History. In the L3 Architecture, the
History Manager stores all changes in the system. It
uses persistent storage such as a database or a file sys-
tem.

• Requirement 4. Deadlock-freedom. Checking deadlock-
freedom is possible since we have formal execution se-
mantics defined by Petri Nets. In L3, we use the same
approach as in [14]. We built in the state space and
check the particular states following to a deadlock-
situation. This problem always arises when detect-
ing deadlock situations in concurrent systems. There
are different possibilities to minimise the impact of the
problem. For example, the approach followed in [14]
aims to simplify the construction of the whole tran-
sition systems and produce short counterexamples for

Table 2: L3 fulfillment of requirements
Requirement L3
Partner view Yes
Concurrency Yes

History Yes
Deadlock-freedom Yes

Formal execution semantics Yes

the deadlock. This is achieved by using heuristics in
the search, specifically a type of heuristics known as
the A* algorithm. In our particular case, we tackle
with deadlocks by constructing the whole space of states
and checking which particular states are following to
a deadlock.

• Requirement 5. Formal execution semantics. L3 for-
mal execution semantics are well-defined by means of
Petri Nets [25]. Petri Nets were devised for use in the
modeling of a specific class of problems i.e. discrete-
event systems with concurrent events. Particularly,
they model events and conditions in systems. At any
point in time, L3 is in a given state. In this state, some
conditions holds and this can trigger the occurrence of
certain events. These events may change the state of
L3, causing some of the previous conditions not to hold
and new conditions to hold. Checking conditions and
their properties are possible thanks to techniques such
as model-checking as described in section 2.2

In this section, we have shown how L3 fulfills all the require-
ments. Apart from the cornerstone functionalities of L3, it
also provides a loosely coupled architecture and implemen-
tation.

5. CONCLUSIONS AND RELATED WORK
As the use of Web Services grows, the problem of inter-

action among them will get more acute. The need for se-
mantics to describe this interaction will leverage B2B in-
teractions. In this paper, we proposed a conversational
language for B2B interactions with a clearly specified con-
ceptual model, execution semantics and architecture. The
forthcoming of our approach are the use of precise semantics
by means of formal methods, which allow us to use model-
checking and make feasible to have the specification of some
properties proven.

A similar approach was presented in [13], where a CCS-
based [22] formal semantics for conversations was discussed.
Also in [12], an architecture for conversations based on the
Speech Act [30] was proposed. While this paper focuses
mainly on Semantic Web Services concerns about B2B in-
teractions, there is a whole plethora of conversation-oriented
interactions in many other domains. There are several other
approaches to the one presented in this paper. Using agents
for taking advantage of the machine-processable metadata
provided by the Semantic Web or the Semantic Web Services
has been studied previously. In [17], the author points out
how the ontology languages of the Semantic Web can lead
to more powerful agent-based approaches for using services
offered on the Web. The importance of the use of ontologies
in agent-to-agent communication has also been highlighted.
In [11], the authors outline their experiences of building se-
mantically rich Web Services based on the integration of



OWL-S [33] based Web Services and an agent communica-
tion language (it is done to separate the domain-specific and
the domain-independent aspect of communication).
A more practical approach is shown in [10]. The authors de-
scribe an application where intelligent agents, aided by con-
text information provided by Semantic Web Services, assist
their users with different sets of tasks.
Semantic Web Services initiatives such as WSMO [31] intend
to present their own choreography model. In WSMO, chore-
ographies are ontology-based and grounded on the Abstract
State Machines (ASM) formal model [15]. Other interesting
formalisms to model conversations are process algebras such
as the Pi-Calculus [28] or the Statecharts formalism [16]. In
the future, we will conduct our research in this direction,
since they look promising directions to formally specify and
model conversations among Semantic Web Services.
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